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Abstract
We study the effects of frustration in an antiferromagnetic film with a face-
centered cubic (FCC) lattice structure with the Heisenberg spin model including
an Ising-like anisotropy. Monte Carlo (MC) simulations have been used to
study the thermodynamic properties of the film. We show that the presence
of the surface reduces the ground state (GS) degeneracy found in the bulk. The
GS is shown to depend on the surface in-plane interaction Js with a critical
value at which ordering of type I coexists with ordering of type II. Near this
value a reentrant phase is found. Various physical quantities such as layer
magnetizations and layer susceptibilities are shown and discussed. We study
here how the physical properties vary as the surface bond strength changes at
a fixed film thickness. The nature of the phase transition is also studied by
a histogram technique. We have also used the Green’s function (GF) method
for the quantum counterpart model. The results at low temperature (T ) show
interesting effects of quantum fluctuations. Results obtained by the GF method
at high T are compared to those of MC simulations. A good agreement is
observed.

1. Introduction

Effects of the frustration in spin systems have been extensively investigated during the last 30
years. Frustrated spin systems are shown to have unusual properties such as large ground state
(GS) degeneracy, additional GS symmetries, and successive phase transitions with complicated
natures. Frustrated systems still challenge theoretical and experimental methods. For recent
reviews, the reader is referred to [1].
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On the other hand, during the same period the physics of surfaces and objects of
nanometric size have also attracted an immense interest. This is due to important applications
in industry [2–5]. In this field, results from laboratory research are often immediately used
for industrial applications, without waiting for a full theoretical understanding. An example is
the so-called giant magneto-resistance (GMR) used in data storage devices, magnetic sensors,
etc [6–9]. In parallel to these experimental developments, much theoretical effort has also
been devoted to the search of physical mechanisms lying behind new properties found in
nanometric objects such as ultrathin films, ultrafine particles, quantum dots, spintronic devices,
etc. This effort aimed not only at providing explanations for experimental observations but also
at predicting new effects for future experiments [10, 11].

The aim of this paper is to investigate the effect of the presence of a film surface in a system
which is known to be very frustrated, namely a face-centered cubic (FCC) antiferromagnet.
The bulk properties of this material have been largely studied, as we will show below. In this
paper, we would like to see in particular how the frustration effects on the nature of the phase
transition in three dimensions are modified in thin films and how the surface conditions affect
the magnetic phase diagram. We emphasize that we do not try to address how the physical
properties vary as the film thickness changes. Rather we work with only one film thickness
and address the question how a change in the surface bond strength changes the physical
properties. We believe however that the effects obtained here remain generic when the film
thickness varies. To carry out these purposes, we shall use Monte Carlo (MC) simulations and
the Green’s function (GF) method for qualitative comparison.

The paper is organized as follows. Section 2 is devoted to the description of the model.
We recall there the properties of the three-dimensional (3D) counterpart model in order to
better appreciate the properties of thin films obtained in this paper. A determination of its GS
properties is also given. In section 3, we show our results obtained by MC simulations as
functions of temperature T . The surface exchange interaction Js is made to vary. A phase
diagram in the space (T, Js) is shown and discussed. In general, the surface transition is found
to be distinct from the transition of interior layers. An interesting reentrant region is observed in
the phase diagram. We also show in this section the results on the critical exponents obtained by
the MC multihistogram technique. A detailed discussion on the nature of the phase transition
is given. Section 4 is devoted to a study of the quantum version of the same model by the
use of the GF method. We find interesting effects of quantum fluctuations at low T . The
phase diagram (T, Js) is established and compared to that obtained by MC simulations for the
classical model. Concluding remarks are given in section 5.

2. Model and classical ground state analysis

It is known that the antiferromagnetic (AF) interaction between nearest-neighbor (NN) spins
on the FCC lattice causes a very strong frustration. This is due to the fact that the FCC lattice is
composed of corner-sharing tetrahedra, each of which has four equilateral triangles. It is well
known [1] that it is impossible to fully satisfy simultaneously the three AF bond interactions
on each triangle.

The analytical determination of the GS of systems of classical spins with competing
interactions is a fascinating subject. For a recent review, the reader is referred to [12]. For a bulk
FCC antiferromagnet, the Heisenberg spins on a tetrahedron form a configuration characterized
by two arbitrary angles [13]. The ground state (GS) degeneracy is therefore infinite. This is
also found in fully frustrated simple cubic lattice with classical Heisenberg spins [14]: the GS
is also characterized by two random continuous parameters. To give an idea of the GS of a
bulk FCC antiferromagnet [13], let us imagine two planes, xz and ψ , where ψ intersects with
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Figure 1. A ground state configuration of a single plaquette (a) Sz
1 is Sz of sublattice 1, (b) cos θ12,

(c) cos θ23, (d) cos θ34. cos θi j is the cosine of the angle between the two spins of sublattices i and j .

the xz plane along the z axis and makes an angle φ with the x axis. Two of the four spins
make an angle θ in the xz plane symmetric with respect to the z axis. The other two spins
make also the same angle, symmetric with respect to the z axis, but in the plane ψ . It has
been shown [13] that the two angles θ and φ are arbitrary between 0 and π . Note that when
θ = 0 the spin configuration is collinear with two spins along the +z axis and the other two
along the −z one. The phase transition of a bulk frustrated FCC Heisenberg antiferromagnet
has been studied [15, 16]. In particular, the transition is found to be of the first order, as in the
Ising case [17–19]. Other similar frustrated antiferromagnets such as the hexagon close-packed
(HCP) antiferromagnet show the same behavior [20].

Let us consider a film of FCC lattice structure with [001] surfaces. To avoid the absence
of long-range order of isotropic non Ising spin model at finite temperature (T ) when the film
thickness is very small, i.e. a quasi-two-dimensional system [21], we add in the Hamiltonian
an Ising-like uniaxial anisotropy term. The Hamiltonian is given by

H = −
∑

〈i, j〉
Ji, j Si · S j −

∑

i

Di (S
z
i )

2, (1)

where Si is the Heisenberg spin at the lattice site i , and
∑

〈i, j〉 indicates the sum over the NN
spin pairs Si and S j .

In the following, the interaction between two NN surface spins is denoted by Js, while all
other interactions are supposed to be antiferromagnetic and all equal to J = −1 for simplicity.
Note that the case of pure Ising model on the simple cubic lattice has been studied by MC
simulation with various surface conditions [22, 23].

We first determine the GS configuration by using the steepest descent method: starting
from a random spin configuration, we calculate the magnetic local field at each site and align
the spin of the site in its local field. In doing so for all spins and repeating until the convergence
is reached, we easily obtain the GS configuration without metastable states. The result is shown
in figure 1

We observe that there is a critical value J c
s = −0.5. For Js < J c

s , the spins in each yz
plane are parallel, while the spins in adjacent yz planes are antiparallel (figure 2(a)). This
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Figure 2. The ground state spin configuration of the FCC cell at the film surface: (a) ordering of
type I for Js < −0.5; (b) ordering of type II for Js > −0.5.

ordering will be called hereafter ‘ordering of type I’: in the x direction the ferromagnetic
planes are antiferromagnetically coupled, as shown in this figure. Of course, there is a
degenerate configuration where the ferromagnetic planes are antiferromagnetically ordered in
the y direction. Note that the surface layer has an AF ordering for both configurations. The
degeneracy of type I is therefore 4, including the reversal of all spins.

For Js > J c
s , the spins in each xy plane are ferromagnetic. The adjacent xy planes

have an AF ordering in the z direction perpendicular to the film surface. This will be called
hereafter ‘ordering of type II’. Note that the surface layer is then ferromagnetic (figure 2(b)).
The degeneracy of type II is 2, due to the reversal of all spins.

Without using a general method [12, 13], let us calculate analytically the GS configuration
in a simple manner for the present model.

Consider a tetrahedron with the spins numbered as in figure 2: S1, S2, S3 and S4 are the
spins in the surface FCC cell (first cell). The interaction between S1 and S2 is set to be equal to
Js (−1 � Js � 0) and all others are taken to be equal to J (< 0), and all Di = D for simplicity.
The Hamiltonian for the cell is written as

Hp = − 1
2 {8Js(S1 · S2)+ 8J (S3 · S4)+ 6J [S1 · S3 + S1 · S4 + S2 · S3 + S2 · S4]

+ 2D[(Sz
1)

2 + (Sz
2)

2 + (Sz
3)

2 + (Sz
4)

2]}. (2)

Let us decompose each spin into two components: an xy component, which is a vector, and a
z component Si = (S‖

i , Sz
i ). The numerical results shown above indicate that the spins have

only a z component. Taking advantage of this, we suppose that the xy vector components of
the spins are all equal to zero. The angles θi of Si with the z axis are then

θ1 = 0, θ3 = π

θ2 = β1, θ4 = β2.

The total energy of the cell (2), with Si = 1
2 , can be rewritten as

Hp = − D

2
+ 3J

4
+

(
3J

4
− Js − D

4
cos β1

)
cosβ1

+ 1

4
(J − D cos β2) cos β2 − 3J

4
cos β1 cos β2. (3)

By a variational method, the minimum of the cell energy corresponds to
∂Hp

∂β1
= Js sinβ1 + D

2
cos β1 sin β1 − 3J

4
sin β1 + 3J

4
cos β2 sin β1 = 0, (4)

∂Hp

∂β2
=

[
3J

4
cos β1 − J

4
+ D

2
cos β2

]
sinβ2 = 0. (5)
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The solutions of equations (4) and (5) corresponding to the minimal energy are

cos β1 = − cos β2 = −1 for |Js| > 0.5,

cos β1 = − cos β2 = 1 for |Js| < 0.5.
(6)

Note that these solutions do not depend on D. The GS energy per spin is

Hp = −D + J + Js for |Js| > 0.5,

Hp = −D + 2J − Js for |Js| < 0.5.
(7)

We see that the solution (6) agrees with the numerical result.

3. Monte Carlo results

In this section, we show the results obtained by MC simulations with the Hamiltonian (1). The
spin model is the classical Heisenberg model of magnitude S = 1.

The film size is L × L × Nz , where Nz is the number of FCC cells along the z direction
(film thickness). Note that each cell has two atomic planes. We use here L = 12, 18, 24, 30, 36
and Nz = 4. Periodic boundary conditions are used in the xy planes. The equilibrating time is
about 106 MC steps per spin and the averaging time is 2 × 106 MC steps per spin. |J | = 1 is
taken as unit of energy in the following.

Before showing the results let us adopt the following notation. The sublattice 1 of the first
cell belongs to the surface layer, while the sublattice 3 of the first cell belongs to the second
layer. The sublattices 1 and 3 of the second cell belong, respectively, to the third and fourth
layers. In our simulations, we used four cells, Nz = 4, i.e. eight atomic layers. The symmetry of
the two film surfaces imposes the equivalence of the first and fourth cells and that of the second
and third cells. It suffices then to show results of the first two cells, i.e. the first four layers.
In addition, in each atomic layer the two sublattices are equivalent by symmetry. Therefore,
we choose to show in the following the results of the sublattices 1 and 3 of the first two cells,
i.e. results of the first four layers.

We show in figure 3 the magnetizations and the susceptibilities of sublattices 1 and 3 of
the first two cells, in the case where Js = −1.

It is interesting to note that the surface layer has the largest magnetization, followed by
that of the second layer, while the third and fourth layers have smaller magnetizations. This
is not the case for non-frustrated films, where the surface magnetization is always smaller
than the interior ones because of the effects of low-lying energy surface-localized magnon
modes [24, 25]. One explanation can be advanced: due to the lack of neighbors, surface
spins suffer fluctuations due to the frustration less than the interior spins, so they maintain
their ordering up to a higher temperature. Let us decrease the Js strength. The surface spins
then have smaller local field, so thermal fluctuations will reduce their ordering to a lower
temperature. Figures 4 and 5 show respectively the cases where Js = −0.8 and −0.5. Near
Js = −0.8 the crossover takes place: the surface magnetization becomes smaller than the
interior ones for Js > −0.8. Note that the magnetizations of second, third and fourth layers
undergo a discontinuity at the transition temperature for Js = −0.8 and −0.5. This suggests
that the phase transitions for interior layers are of first order as has been found for a bulk FCC
antiferromagnet [15]. This should be checked in the future.

For weak |Js|, there is only one transition for all layers. An example is shown in figure 6
for Js = −0.1. Note that the first-order character disappears as there is no discontinuity of
layer magnetizations at the transition temperature.

In the region −0.5 < Js < −0.45, there is an interesting reentrant phenomenon. To
facilitate the description of this phenomenon, we show the phase diagram in the space (Js, Tc) in
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Figure 3. Magnetizations and susceptibilities of sublattices 1 and 3 of the first two cells versus
temperature for Js = −1.0 with L = 24 and D = 0.1. L j denotes the sublattice magnetization of
layer j .

figure 7. In the region −0.5 < Js < −0.45, the GS is of type II, as seen above. According to the
phase diagram, we see that, when the temperature increases from zero, the system goes through
the phase of type II, and undergoes a transition to enter the phase of type I before making
a second transition to the paramagnetic phase at high temperature. This kind of behavior is
termed as a reentrant phenomenon, which has been found by exact solutions in a number of
very frustrated systems [26, 27]. For a complete review on these exactly solved systems, the
reader is referred to the chapter by Diep and Giacomini [28] in [1]. We note here that the
reentrance is often found near the frontier where two phases coexist in the GS [1]. This is the
case at Js = J c

s = −0.5.
The discontinued vertical line at Js = −0.5 is a first-order line separating phases I and

II. The coexistence of these two phases which do not have the same symmetry explains the
first-order character of this line. To show it explicitly, we have calculated at T = 0.15 the
magnetization M and the staggered magnetization Mst of the first layer with varying Js across
−0.5. From the GS configurations shown in figure 2, M should be zero in phase I and finite in
phase II, and vice versa for Mst. This is observed at T = 0.15, as shown in figure 8. The large
discontinuity of M and Mst at Js = −0.5 shows a very strong first-order character across the
vertical line in figure 7.

Let us discuss the finite-size effects in the transitions observed in figures 3 to 6. This is
an important question, because it is known that some apparent transitions are artefacts of small
system sizes. We have checked with L = 36. The results do not change. Of course, we may
think that these sizes are still small to change the shape of the phase diagram, especially near
Js = −0.5 where finite-size effects may be strong because of the frontier between the two
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Figure 4. Magnetizations and susceptibilities of sublattices 1 and 3 of the first two cells versus
temperature for Js = −0.8 with L = 24 and D = 0.1. L j denotes the sublattice magnetization of
layer j .

phases. But the results from the Green’s function method, which are for infinite L, show, as
will be seen later, a similar shape near Js = −0.5. So we believe that the results in figure 7 are
correct for infinite size.

To confirm further the observed transitions, we have made a study of finite-size effects on
the layer susceptibilities at some chosen values of Js by using the accurate MC multihistogram
technique [29–31].

At this point, let us recall that bulk Ising frustrated systems, unlike unfrustrated
counterparts, have different transition natures: the antiferromagnetic FCC and HCP Ising
lattices have a strong first-order transition [17–19], while the stacked antiferromagnetic
triangular lattice has a controversial nature (see references in [34]). The model studied here
is the frustrated FCC film in which surface effects can modify the strong first-order transition
observed in its bulk counterpart.

Our results show that transitions at Js = −1 and −0.1 are real second-order transitions
obeying some scaling law. Figure 9 shows the size effects on the maximum of the
susceptibilities of the first and second layers for Js = −0.1, while figure 10 shows that of
the third and fourth layers. As is seen, the maximum of the susceptibilities χmax increases with
increasing L.

Using the scaling law χmax ∝ Lγ /ν , we plot lnχmax versus ln L in figure 11. The ratio
of the critical exponents γ /ν is obtained by the slope of the straight line connecting the data
points of each layer.

Within errors the third and fourth layers have the same value of γ /ν, which is neither
that of the 2D nor the 3D Ising universality class, 1.75 and 2, respectively. The same occurs
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Figure 5. Magnetizations and susceptibilities of the first two cells versus temperature for Js = −0.5
with L = 24 and D = 0.1. L j denotes the sublattice magnetization of layer j . The susceptibility
of sublattice 1 of the first cell is divided by a factor 5 for presentation convenience.

for the values of the first and second layers. The exponent ν can be obtained as follows.
We calculate as a function of T the magnetization derivative with respect to β = (kBT )−1:
V1 = 〈(ln M)′〉 = e f t〈E〉 − 〈M E〉/ 〈M〉, where E is the system energy and M the sublattice
order parameter. We identify the maximum of V1 for each size L. From the finite-size
scaling we know that V max

1 is proportional to L1/ν [31]. We plot in figure 12 ln V max
1 as a

function of ln L for Js = −0.1. The slope of each line gives 1/ν. For the case Js = −0.1,
we obtain ν = 0.822 ± 0.020, 0.795 ± 0.020, 0.790 ± 0.020, 0.782 ± 0.020 for the first,
second, third and fourth layers. These values are far from the 2D value (ν = 1). We deduce
γ = 1.510 ± 0.010, 1.442 ± 0.015, 1.412 ± 0.025, 1.395 ± 0.025. The values of ν and γ are
decreased when one goes from the surface to the interior of the film.

We show in figures 13 and 14 the maximum of sublattice magnetizations and their
derivatives for the first two layers in the case of Js = −1. We find ν1 = 0.794 ± 0.022,
ν2 = 0.834 ± 0.027, γ1 = 1.524 ± 0.040, and γ2 = 1.509 ± 0.022.

Let us discuss the values of the critical exponents obtained above. These values do not
correspond either to 2D or 3D Ising models (γ2D = 1.75, ν2D = 1, γ3D = 1.241, ν3D = 0.63).
There are multiple reasons for those deviations. Apart from numerical precision and the modest
sizes we used, there may be deep physical origins.

A first question which naturally arises is the effect of the frustration. The 3D version of
this model, as said above, has a first-order transition, with a very strong character for the Ising
case [17–19] and a somewhat less strong one for the continuous spin models [15]. It has been
shown that, at finite temperature, the phenomenon called ‘order by disorder’ occurs, leading to a
reduction of degeneracy: only collinear configurations survive by an entropy effect [15, 32, 33].
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Figure 6. Magnetization and susceptibility of the first two cells versus temperature for Js = −0.1
with L = 24 and D = 0.1. L j denotes the sublattice magnetization of layer j .

Figure 7. Critical temperature versus Js with L = 24 and D = 0.1. L j denotes data points for
the maximum of the sublattice magnetization of layer j . I and II denote ordering of type I and II
defined in figure 2. III is a paramagnetic phase. The discontinued vertical line is a first-order line.
Errors are smaller than symbol sizes. See text for comments.

The infinite degeneracy is reduced to 6, i.e. the number of ways to put two AF spin pairs on
a tetrahedron. The model is equivalent to a 6-state Potts model. The first-order transition
observed in the 3D case is in agreement with the Potts criterion according to which the transition
in q-state Potts model is of first-order in three dimensions for q � 3.

In the case of a film with finite thickness studied here, it appears that the first-order
character is lost.
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Figure 8. The magnetization M and the staggered magnetization Mst of the first layer versus Js are
shown, at T = 0.15, with L = 24 and D = 0.1. I and II denote ordering of type I and II, defined in
figure 2. III is a paramagnetic phase. See text for comments.

Figure 9. Susceptibilities of layer 1 (left) and 2 (right) are shown for various sizes L as a function
of temperature for Js = −0.1 and D = 0.1.

A first possible cause is from the degeneracy. According to the results shown in the
previous section, the GS degeneracy is 2 or 4, depending on Js. If we compare to the Potts
criterion according to which the transition is of first order in two dimensions only when q > 4,
then the transition in thin films should be of second order. That is indeed what we observed.

Another possible cause for the second-order transition observed here is from the role of
the correlation in the film. For second-order transitions, some arguments, such as those from
renormalization group theory, say that the correlation length in the direction perpendicular to
the film is finite; hence it is irrelevant to the criticality: the film should have 2D character. If a
transition is of first order in three dimensions, i.e. the correlation length is finite at the transition
temperature, then in thin films the thickness effect may be important: if the thickness is larger
than the correlation length at the transition, than the first-order transition should remain. On the
other hand, if the thickness is smaller than that correlation length, the spins then feel an ‘infinite’
correlation length across the film thickness. As a consequence, two pictures can be thought of:
(i) the whole system may be correlated and the first-order character is to become a second-order
one, and (ii) the correlation length is longer but still finite; the transition remains of first order.

10
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Figure 10. Susceptibilities of layer 3 (left) and 4 (right) are shown for various sizes L as a function
of temperature for Js = −0.1 and D = 0.1.

Figure 11. Maximum sublattice susceptibility χmax versus L in ln–ln scale, for Js = −0.1 and
D = 0.1. L j denotes the sublattice magnetization of layer j . The slopes of these lines give the
ratios of exponents γ/ν.

At this point, we would like to emphasize that, in the case of simple surface conditions,
i.e. no significant deviation of the surface parameters with respect to those of the bulk,
the bulk behavior is observed when the thickness becomes larger than a few dozen atomic
layers [24, 25]: surface effects are insignificant on some thermodynamic properties such as
the value of the critical temperature, the mean value of magnetization at a given T , etc. It
should however be stressed that the criticality is very different. It depends on the correlation
length compared to the thickness: for example, we have obtained in the case of simple cubic
films with Ising model critical exponents identical to those of the 2D Ising universality class
up to thickness of nine layers [35]. Due to the small thickness used here, we think that the 2D
character should be assumed.

Now for the anisotropy; remember that in the case studied here, we do not deal with the
discrete Ising model but rather an Ising-like Heisenberg model. The deviation from the 2D
values may then result in part from a complex coupling between the Ising-like symmetry and
the continuous nature of the classical Heisenberg spins. This deviation may be important if the
anisotropy constant D is small, as in the case studied here. From the renormalization group

11
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Figure 12. The maximum value of 〈(ln M)′〉 = 〈E〉 − 〈M E〉 / 〈M〉 versus L in ln–ln scale for
Js = −0.1, where M is the sublattice order parameter. The slope of each line gives 1/ν. L j

denotes the sublattice magnetization of layer j .

Figure 13. Maximum sublattice susceptibility χmax versus L in ln – ln scale, for Js = −1 and
D = 0.1. L j denotes the sublattice magnetization of layer j . The slopes of these lines give the
ratios of exponents γ/ν.

calculations, since anisotropy is a relevant parameter, one expects that any finite anisotropy
will lead to Ising-like critical behavior, but with corrections due to the continuous nature of
Heisenberg spins before one enters the linear regime around the Ising fixed point.

To conclude this section, we believe, from the physical arguments given above, that the
critical exponents obtained above which do not belong to any known universality class may
result from different physical mechanisms. This is a subject of future investigations.

4. Green’s function method

We can rewrite the full Hamiltonian (1) in the local framework as

H = −
∑

〈i, j〉
Ji, j

{
1
4 (cos θi j − 1)(S+

i S+
j + S−

i S−
j )+ 1

4 (cos θi j + 1)(S+
i S−

j + S−
i S+

j )

+ 1
2 sin θi j(S

+
i + S−

i )S
z
j − 1

2 sin θi j S
z
i (S

+
j + S−

j )+ cos θi j S
z
i Sz

j

} −
∑

〈i〉
Ii (S

z
i )

2,

(8)

where cos(θi j) is the angle between two NN spins.
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Figure 14. The maximum value of
〈
(ln M)′

〉 = 〈E〉 − 〈M E〉/ 〈M〉 versus L in ln–ln scale for
Js = −1, where M is the sublattice order parameter. The slope of each line gives 1/ν. Lk S j

denotes one sublattice magnetization of layer j .

To study the properties of quantum spins over a large region of temperatures, there are
only a few methods which give relatively correct results. Among them, the GF method is
known to recover the exact results at very low T obtained from the spin–wave theory. In
addition, it is better than the spin–wave theory at higher temperatures, and can be used up to
the transition temperature with of course less precision on the nature of the phase transition. It
should be emphasized that the GF method is much better than other methods such as mean-field
theories in estimating the value of the critical temperature. We choose this method here to study
quantum effects at low T and to obtain the phase diagram at high T .

The GF method can be used for non-collinear spin configurations [36]. In the case studied
here, one has a collinear configuration because of the Ising-like anisotropy. In this case, we
define two double-time GFs by [37]

Gi j(t, t ′) = 〈〈S+
i (t); S−

j (t
′)〉〉, (9)

Fi j (t, t ′) = 〈〈S−
i (t); S+

j (t
′)〉〉. (10)

The equations of motion for Gi j(t, t ′) and Fi j (t, t ′) are written by

i
d

dt
Gi, j (t, t ′) = 〈[S+

i (t), S−
j (t

′)]〉δ(t − t ′)− 〈〈[H, S+
i (t)]; S−

j (t
′)〉〉, (11)

i
d

dt
Fi, j (t, t ′) = 〈[S−

i (t), S−
j (t

′)]〉δ(t − t ′)− 〈〈[H, S−
i (t)]; S−

j (t
′)〉〉. (12)

We shall neglect higher-order correlations by using the Tyablikov decoupling scheme [38],
which is known to be valid for exchange terms [39]. Then, we introduce the following Fourier
transforms:

Gi, j (t, t ′) = 1

�

∫ ∫
dkxy

1

2π

∫ +∞

−∞
dω e−iω(t−t ′). gn,n′

(
ω,kxy

)
eikx y·(Ri −R j), (13)

Fi, j (t, t ′) = 1

�

∫ ∫
dkxy

1

2π

∫ +∞

−∞
dω e−iω(t−t ′). fn,n′

(
ω,kxy

)
eikx y·(Ri −R j), (14)

where ω is the spin–wave frequency, kxy denotes the wavevector parallel to xy planes, Ri is the
position of the spin at the site i , and n and n′ are respectively the indices of the layers to which
the sites i and j belong. The integral over kxy is performed in the first Brillouin zone whose
surface is � in the xy reciprocal plane.

13
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The Fourier transforms of the retarded GF satisfy a set of equations rewritten under the
following matrix form:

M(ω)g = u, (15)

where M(ω) is a square matrix (2Nz × 2Nz), and g and u are column matrices which are
defined as follows:

g =

⎛
⎜⎜⎜⎜⎝

g1,n′

f1,n′
...

gNz ,n′

fNz ,n′

⎞
⎟⎟⎟⎟⎠
, u =

⎛
⎜⎜⎜⎜⎝

2
〈
Sz

1

〉
δ1,n′

0
...

2〈Sz
Nz

〉δNz ,n′

0

⎞
⎟⎟⎟⎟⎠
, (16)

and

M(ω) =

⎛

⎜⎜⎜⎜⎜⎜⎝

A+
1 B1 D+

1 D−
1 · · ·

−B1 A−
1 −D−

1 −D+
1

...
... · · · · · · · · · ...
... C+

Nz
C−

Nz
A+

Nz
BNz

· · · −C−
Nz

−C+
Nz

−BNz A−
Nz

⎞

⎟⎟⎟⎟⎟⎟⎠
, (17)

where

A±
n = ω ± [

1
2 Jn

〈
Sz

n

〉
(Zγ ) (cos θn + 1)− Jn

〈
Sz

n

〉
Z cos θn

− 2In
〈
Sz

n

〉 − 2Jn,n+1
〈
Sz

n+1

〉
cos θ(a)n,n+1 − 2Jn,n+1

〈
Sz

n+1

〉
cos θ(b)n,n+1

− 2Jn,n−1
〈
Sz

n−1

〉
cos θ(a)n,n−1 − 2Jn,n−1

〈
Sz

n−1

〉
cos θ(b)n,n−1

]
, (18)

Bn = 1
2 Jn

〈
Sz

n

〉
(Zγ ) (cos θn − 1) , (19)

C±
n = Jn,n−1

〈
Sz

n

〉 (
cos θ(a)n,n−1 ± 1

)
+ Jn,n−1

〈
Sz

n

〉 (
cos θ(b)n,n−1 ± 1

)
, (20)

D±
n = Jn,n+1

〈
Sz

n

〉 (
cos θ(a)n,n+1 ± 1

)
+ Jn,n+1

〈
Sz

n

〉 (
cos θ(b)n,n+1 ± 1

)
, (21)

in which, Z = 4 is the number of in-plane NNs, θ(a)n,n±1 the angle between two NN spins of

sublattice 1 and 3 belonging to the layers n and n ± 1 (see figure 2), θ(b)n,n±1 the angle between
two NN spins of sublattice 1 and 4, θn the angle between two in-plane NN spins in the layer n,
and

γ = 1

Z

[
4 cos

(
kxa

2

)
cos

(
kya

2

)]
.

Here, for compactness, we have used the following notation.

(i) Jn and Dn are the in-plane interactions. In the present model Jn is equal to Js for the two
surface layers and equal to J for the interior layers. All Dn are set to be D.

(ii) Jn,n±1 are the interactions between a spin in the nth layer and its neighbor in the (n ± 1)th
layer. Of course, Jn,n−1 = 0 if n = 1, Jn,n+1 = 0 if n = Nz .

Solving det|M| = 0, we obtain the spin–wave spectrum ω of the present system. The solution
for the GF gn,n is given by

gn,n = |M|n
|M| , (22)

14
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Figure 15. Layer magnetization of the first four layers versus temperature for Js = −1.0 and
D = 4. L j denotes the sublattice magnetization of layer j . Note that except for the first layer
(upper curve), all other layer magnetizations coincide in this figure scale.

with |M|n being the determinant made by replacing the nth column of |M| by u in (16). Writing
now

|M| =
∏

i

(
ω − ωi

(
kxy

))
, (23)

one sees that ωi
(
kxy

)
, i = 1, . . . , Nz , are poles of the GF gn,n. ωi(kxy) can be obtained by

solving |M| = 0. In this case, gn,n can be expressed as

gn,n =
∑

i

fn(ωi (kxy))

(ω − ωi (kxy))
, (24)

where fn(ωi (kxy)) is

fn(ωi (kxy)) = |M|n(ωi (kxy))∏
j �=i(ω j (kxy)− ωi (kxy))

. (25)

Next, using the spectral theorem which relates the correlation function 〈S−
i S+

j 〉 to the
GF [40], one has
〈
S−

i S+
j

〉
= lim

ε→0

1

�

∫ ∫
dkxy

∫ +∞

−∞
i

2π

(
gn,n′ (ω + iε)

− gn,n′ (ω − iε)
) · dω

eβω − 1
eikx y·(Ri −R j), (26)

where ε is an infinitesimal positive constant and β = 1/kBT , kB being the Boltzmann constant.
Using the GF presented above, we can calculate self-consistently various physical

quantities as functions of temperature T . We start the self-consistent calculation from T = 0
with a small step for temperature: 5 × 10−3 at low T and 10−1 near Tc (in units of J/kB). The
convergence precision has been fixed at the fourth figure of the values obtained for the layer
magnetizations. We know from the previous section that the spin configuration is collinear;
therefore, in this section, we shall use a large value of Ising anisotropy D in order to get a rapid
numerical convergence. For numerical calculation, we will use D = 4 and J = −1 and a size
of 802 points in the first Brillouin zone.

Figure 15 shows the sublattice magnetizations of the first four layers. As seen, the first-
layer one is larger than the other three just as in the case of the classical spins shown in figure 3.
This difference in sublattice magnetization between layers vanishes at Js 
 −0.8, as seen in

15
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Figure 16. Layer magnetizations of the first four layers versus temperature for Js = −0.8 and
D = 4. L j denotes the sublattice magnetization of layer j . Note that except for the first layer at
low T (upper curve), all other layer magnetizations coincide in this figure scale.

Figure 17. Layer magnetization of the first four layers versus temperature for Js = −0.5 and
D = 4. L j denotes the sublattice magnetization of layer j . Note that the first layer makes a
crossover: it is higher at low T and smaller at high T than all other layer magnetizations which
coincide in this figure scale. See text for comments on the crossover of surface magnetization.

figure 16. Again here, one has a good agreement with the case of classical spins shown in
figure 4.

For Js > −0.8, the sublattice magnetization of the first layer is larger at low T and higher
at high T , as seen in figure 17 for Js = −0.5. This crossover of sublattice magnetizations
comes from the competition between quantum fluctuations and the strength of Js: when |Js| is
small, the quantum fluctuations of the surface layer are small, yielding a small zero-point spin
contraction for surface spins at T = 0. So, the surface magnetization is higher than the interior
ones. At higher T , however, small |Js| gives rise to a small local field for surface spins, which
in turn yields a smaller surface magnetization at high T . This crossover has been found earlier
in antiferromagnetic superlattices and films [41, 42].

For Js = −0.1, there is no longer a crossover at low T , as seen in figure 18. Moreover,
there is only a single transition at Tc 
 2.65 for both surface and interior layers.

We summarize in figure 19 the phase diagram for the quantum spin case obtained with the
GF method. The vertical discontinued line indicates the boundary between ordered phases of
types I and II. Phase III is paramagnetic. Note the following interesting points:

(i) for Js < −0.4 there is a surface transition distinct from that of interior layers;
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Figure 18. Layer magnetization of the first four layers versus temperature for Js = −0.1 and
D = 4. L j denotes the sublattice magnetization of layer j . Only at low T is the surface
magnetization distinct (upper curve) from the other ones.

Figure 19. Phase diagram obtained by the Green’s function method with D = 4. L j denotes the
transition temperature of the sublattice magnetization of layer j . Errors are smaller than the symbol
sizes. See text for comments.

(ii) for Js < −0.8, a surface transition occurs at a temperature higher than that of interior
layers;

(iii) there is a reentrance between Js = −0.4 and −0.5. This is very similar to the phase
diagram of the classical spins obtained by MC simulations shown in figure 7.

5. Concluding remarks

We have studied in this paper the properties of a thin film made from a fully frustrated material,
namely an FCC antiferromagnet. We have considered both classical and quantum Heisenberg
spin models with an Ising-like single-ion anisotropy. The classical case was treated by Monte
Carlo simulation while the quantum case was studied by the Green’s function method. Several
important results are found in this paper. We found that the presence of a surface reduces the
GS degeneracy of the fully frustrated FCC antiferromagnet and there exists a critical value
of the in-plane surface interaction J c

s = −0.5 which separates the GS configuration of type
I from that of type II. We have studied the phase transition of the system. The surface spin
ordering is destroyed in general at a temperature different from that of the interior layers. We

17



J. Phys.: Condens. Matter 19 (2007) 386202 V T Ngo and H T Diep

found that in a small region just above J c
s there is a reentrant phase: with decreasing T the

system first changes from the paramagnetic phase to the type II phase, and then enters at a
lower temperature into the type I phase. The critical behaviors of surface and interior layers
have been shown and discussed.

We hope that these unusual surface properties will help experimentalists to analyze their
data obtained for real systems in which frustration plays an important role.
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[35] Tu X T, Ngo V T and Diep H T 2007 unpublished
[36] See for example Quartu R and Diep H T 1997 Phys. Rev. B 55 2975

Santamaria C, Quartu R and Diep H T 1998 J. Appl. Phys. 84 1953
[37] Tahir-Kheli R A and Ter Haar D 1962 Phys. Rev. 127 88
[38] Bogolyubov N N and Tyablikov S V 1959 Dokl. Akad. Nauk SSSR 126 53

Bogolyubov N N and Tyablikov S V 1959 Sov. Phys.—Dokl. 4 604 (Engl. Transl.)
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